﻿ Multiplication of Integers

# Exploring Integers - Multiplication

Math > Math Concepts  > Numbers >Integers> Multiplication of Integers

 Topic Index Math - math subjects - by grade level Math Help - Math Help Forum - Math Tutoring - Math Blog for K-12 Math Games - Games Index Math Worksheets - math worksheets Math Books - Used Textbooks Resources - The Math Forum - Math Websites

## Multiplication of Integers

Exploring Integers - Part 3

First page Back Continue Last page

 Multiplication of Integers 2 * 3  means  to add 2 to itself 3 times: 2 + 2 + 2 = 6 -3 * 2 means to add -3 to itself 2 times: -3 + -3    = -6 4 * -2 means to add -2 to itself 4 times: -2 + -2 + -2 + -2 = -8 -2 * -3  has no meaning except, possibly, the opposite of 2 * -3,             that is, add -3 to itself 2 times then use the opposite of the result:             -3 + -3 = -6,  the inverse of -6 is 6.  So, -2 * -3 = 6. It is probably best to learn and use the rules:    a.  2 same sign integers multiplied yield a positive product.      b.  2 mixed sign integers multipled yield a negative product. But what if you have more than 2 integers multiplied together? Example:  -2 * 3 * -4           well, simplify by taking 2 factors at a time from left to right:            -2 * 3  is  -6,  so we have  -6 * -4.            Now -6 * -4  = 24, the answer.   Example:   2 * 5 * -6 * -2 * 3                     10  * -6 * -2 * 3                        -60    * -2  * 3                              120      * 3                                         360   Division of Integers   The division of integers is carried out in the normal way of doing division, except the answer ignores the remainder.   Examples:   4 / 3 = 1               (remainder 1 ignored)   3 / 4 = 0               (remainder 3 ignored)   —15 / 6 = —2       (remainder —3 ignored)   —200 / —10 = 20   First page Back Continue Last page This is another FREE ALGEBRA PRINTABLE presented to you from the Algebra section of K12math.com